Systems Engineering Foundations of
Software Systems Integration

Peter Denno and Allison Barnard Feeney

National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

peter.denno@nist.gov, abf@nist.gov

Abstract. This paper considers systems engineering processes for soft-
ware systems integration. Systems engineering processes, as intended
here, concern how engineering capability should be factored into problem-
solving agencies for application to software systems integration tasks, and
how the results produced by these agencies should be communicated and
integrated into a system solution. The environment in which systems in-
tegration takes place is assumed to be model-driven; problem-solving
agencies, working from various viewpoints, employ differing notations
and analytical skills. In the course of identifying the systems engineering
process, the paper presents a conceptual model of systems engineering,
and reviews a classification of impediments to software systems integra-
tion.

1 Introduction

Software systems integration entails systems engineering, whether one consciously
practices it or not. Systems integration starts with the recognition of new re-
quirements and is not complete until one validates the resulting system against
those requirements. A premise of this paper is that choice of systems engineering
process is a matter of significant concern, particularly if one hopes to automate
portions of the process in a model-based environment.

A model-based environment (MBE) is an environment for systems integration
that emphasizes the role of models in automating an integration process. The
environment envisaged in this paper would provide an incrementally refinable
account of a business process and the system that implements it. The account
is derived from the union of all available views of the system. Views are pro-
vided in various notations (or “viewpoint technologies”). The MBE serves three
purposes: (1) it fosters coherence among views by recognizing refinements and
interrelations among disparate models; (2) it enables communication between
problem solvers (human or automated) working in differing viewpoints toward

! Commercial equipment and materials are identified in order to describe certain pro-
cedures. In no case does such identification imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best available for the purpose.

the resolution of an integration task; and, (3) it provides links from views that
state or elaborate requirements to those that posit design commitments.

The concerns just mentioned, heterogeneous views, viewpoint communica-
tion, requirements and their allocation? to problem solvers, beg the question
of what sort of systems engineering process the MBE should implement.? The
answer to this question is the central point of this paper. The issue (1) above,
of providing inter-model coherence is discussed in [8].

Section 2 of the paper describes a conceptual model of systems engineering.
Section 3 summarizes previous work which presents a classification of impedi-
ments to the integration of software-intensive systems. [3] Section 4, concerns
the central point of the paper. It considers choices of systems engineering pro-
cesses for an MBE for software systems integration. Section 5 outlines our MBE
architecture. Section 6 discusses related work and future plans for the MBE de-
scribed in the paper. Section 7 provides conclusions. The final section, Appendiz
A, is a glossary of terms from the systems engineering conceptual model.

2 A conceptual model of systems engineering

Systems engineering is any methodical approach to the synthesis of an entire
system that (1) defines views of that system that help elaborate requirements,
and (2) manages the relationship of requirements to performance measures, con-
straints, components, and discipline-specific system views. Figure 1 provides a
UML class diagram of a conceptual model of systems engineering. Appendiz A
provides definitions of concepts presented in the UML.

The key terms in this definition of systems engineering are “requirements”
and “views.” Systems engineering is foremost about stating the problem, whereas
other engineering disciplines are about solving it. A viewis a representation of the
whole system from the perspective of a related set of concerns [14]. An example of
a view that “help[s] elaborate requirements” is a functional model of the system,
that is, a view that identifies the resources, roles, and processes involved in
fulfilling the purpose of the system. A viewpoint is a method founded on a body of
knowledge of some engineering or analytical discipline and used in constructing a
view (derived from [14]). A view is an application of a viewpoint. An architecture
description language (ADL), such as Wright [1], provides a viewpoint that serves
this role in systems engineering.

2 The term requirements allocation refers to the task of charging problem solvers with
the task of meeting requirements. Technical problem solvers meet requirements by
making design commitments. Conceptual problem solvers refine original requirements
and assert derived requirements.

3 We distinguish a systems engineering process from a design methodology in that a
design methodology only prescribes a path through the space of possible refinements
(or design commitments). A systems engineering process prescribes the decomposi-
tion into agencies (viewpoints, problem solvers) that make the commitments, and a
means to orchestrate these agencies.

-is derived from

1.5

-accol

Requirement

unts for (traces)

1.* -
-] -app! the consequences of not meeting
1.
1.* -yields
-provides context for = 1.%
S Viewpoint
°
3 [Solution Metric
-) ; - 1.*
2 1. -is used in the dlefinition of
2
=
H -is established by 1 i
3 Risk is measured through
-establishes purposp, audignce, techniques, methods for 1.*
I _has associated Constraint (Optimization Criterion
View
1 -has as perspective 1 -is traged in
1 -measures
-appraises consequences of
System Solution
1.* -provides perspective for 1 _x
1
Validation
-has as $olution
7 1> tests 1 | s part of
»
5
S
o 1. -is assessed through
8
2
i -assesses accuracy of 1. -is tested By
°
- 1
-provides context for [System Concept Verification
-is a solution for
1.4
1.* -is composed of
1 -references -is referenced by 1.
Component
1.
1
Environment
-is served by
-operafes in the context of
1. -is a characteristic of
g -is designed to achieve 1.*
-defined in terms of 1.%
2 Function
a
z
<
°
Behavior
1.* -is characterized by
Property

Fig. 1. Conceptual

model of systems engineering

Because an ADL describes a functional model of the system,* it posits, to
some level of specificity, a componentization of the system and an implied corre-
spondence to requirements. That is, every component has its purpose and that
purpose can be traced to the requirements.

A view represents a collection of requirements. The utility of a view depends
largely on whether or not there exists a corresponding body of knowledge and
technology to draw from; that is, whether its viewpoint exists. The body of
knowledge underlying the viewpoint (the technology and expertise in its use)
may serve to refine requirements, assess how well a design meets the require-
ments, or it may posit a design or design commitments that would satisfy those
requirements [17].

2.1 Requirements, system solution, and system concept

Requirements should make reference to the environment in which the system will
operate. Requirements are about the environment [30]. The environment includes
those components of the original system that remain unchanged (in structure
and usage) in the new system. The environment also includes components whose
usage is mandated. A system solution is an assembly of interacting components
forming a whole and serving requirements. A system solution is an instance
corresponding to its system concept. The system concept is a conceptual entity;
it is a characterization, based on the requirements, that holds for anything that
satisfies the requirements.

In engineering design, and its formalization and automation, it is impor-
tant that statements of requirement do not presuppose mechanisms intended to
achieve those requirements. An MBE should distinguish viewpoints and prob-
lem solvers that make design commitments from those that refine statements
of requirements and produce derived requirements without making design com-
mitments. The reasons for this stipulation concerns the invariance of original
requirements and the relative tractability of a design process that relies on this
fact. The following example illustrate this point.

Suppose that one has defined the original requirements of a new business
process. A problem solver with an enterprise view may identify the components
that are involved in fulfilling these requirements by identifying the relevant infor-
mation, who possesses it, and who requires it. This problem solver may posit two
derived requirements: (1) a derived requirement stating that the an information
flow must occur between the identified components; (2) a derived requirement
stating the triggering and temporal ordering of events that lead to the exchange
of the information. These new assertions draw on information in the environment
(of both the existing and to-be system). Other than to identify roles, the infor-
mation does not concern the means by which the business process is achieved.

4 In models that embody commitments to mechanism, function is defined as the ac-
tivity by which something fulfills it purpose. However, in models that do not make
commitments to mechanisms (i.e. conceptual models), this notion of function cannot
be represented. Utility — what purpose something serves — is the the corresponding
term in conceptual models.

As long as the original requirement remains valid, this information need never be
retracted. The assertions made by these problem solvers are part of the system
concept.

On the other hand, any of a number of problems might impede the imple-
mentation of this information flow (see section §). If the problem is that both
components behave as servers, one must take initiative to update the state of the
component requiring the information. Potential solutions include: (1) component
A, who has the information, triggers a process to communicate with component
B, who needs the information; (2) a delegate of component B polls component
A for changes in the information, or; (3) both components A and B subscribe to
an event service tracking the original production of the information. The choices
made here are design commitments, since they concern mechanism, and their
quality is contingent on design commitments made elsewhere to address other
original requirements. If, for example, the totality of requirements suggests that a
new event-based channel of communication is warranted, choice (3) may become
increasingly attractive. That is, it may become necessary to retract assertions
that are design commitments. The assertions made by these problem solvers are
part of a system solution, not the system concept.

2.2 Behavior, function, and role

Systems® are made of components, which themselves may be viewed as systems
(subsystems to the system). Systems may be described efficiently in terms of
their function, but in ad hoc integration,® when a subsystem is integrated into
a system, what is most relevant is not what its function was as it operated in
isolation, but rather whether its behavior serves a function. This is so because it
is ultimately the behavior of the subsystem that must be controlled and exploited
to service the needs of the system. The function of the component as it was in
isolation may not be relevant. For example, a text editor may be used to write
reports. The editor may serve this function at various points in the processes
of an organization. It may be the case that the editor has a regular expression
search capability that can be used to to recognize exceptional conditions in data
collected from the factory floor. The regular expression search behavior can be
harnessed for this purpose. Its report writing function is not relevant here.

The behavior of a component may serve multiple functions, and each instance
of its application in a system may serve a different function. The function of the
instance in the context of the system is called the role of the component. The
notion of role cannot be distinguished from the notion of function, except for
the fact that a role is defined in the context of the usage of an occurrence of the
component in a particular system context.

5 Unless it is necessary to distinguish the concept of the system from its solution, we
will henceforth use the term system to refer to a system solution. This is consistent
with common usage.

5 ad hoc integration is integration where a communication flow is required between
components that were not conceived with the intention of providing or receiving
that flow.

3 Impediments to integration

Integration is about enabling components to act jointly toward a goal. In the
scope of the model-based environment, the problem solvers that are orchestrated
in the systems engineering process work toward enabling joint action. Joint ac-
tion is impeded by various obstacles. [3] identifies five broad categories of imped-
iments to the integration of software-intensive systems and classifies problems
within these. That work is summarized below.

Technical impediments concern problems in communication and process
flow arising from the technology and logistics employed at the interfaces of com-
ponents. These include control conflicts (e.g., every component is designed to be
a client, or every component is designed to be a server) and differences in the
syntax of messages.

Semantic impediments concern how well information communicated among
the components of the system serves the joint action that fulfills the purpose of
the system. Semantics refers either to a theory of behavior or a theory of reference
[25]. Terms have a sense and a reference. Regarding reference, communicating
agents may differ with respect to the objects to which a term refers. These differ-
ences may be (but are not always) detrimental to joint action. Regarding sense,
the behavior that a message elicits from the recipient may be in conflict with
what is expected and intended by the speaker.

Information may be conveyed directly to known recipients or published. Infor-
mation conveyed to known recipients intends to elicit particular behaviors from
the recipients and utterances are designed for that specific purpose. Published
information is information that should be true in the context of the system. The
behavior that published information is intended to elicit is known only by the
systems engineer, not the components that provide the information.

Functional impediments concern conflicts arising from a mismatch be-
tween actual behavior and the behavior that is expected for a particular role.
An agent may perform activities that are beyond those called for in its desig-
nated role. The effect of these extraneous activities may be (but are not always)
detrimental to joint action.

Qualitative tmpediments concern how well a component performs the role
to which it is tasked. Qualitative impediments include accuracy, security, trust,
credibility, and timeliness of results.

Logistical impediments concern the impact of the designed system on the
system in which it is embedded. Problems here concern system validation, that
is, how well the deployed system, in fact, satisfies requirements. Important re-
quirements may have gone unstated and unfulfilled. Requirements may have
changed while the system was being designed.

4 Systems Engineering Processes

A systems engineering process prescribes a decomposition of engineering capa-
bility into problem-solving agencies, and a means to orchestrate these problem

solvers. A design methodology prescribes a path through the space of potential
refinements (of both requirements and specifications). Differing design method-
ologies can be employed within the individual problem solvers as the means by
which they function. The choice of systems engineering process determines how
requirements are classified and allocated to problem solvers. In part because dif-
ferent system engineering processes suit different problems, systems engineering
has not defined a best practice systems engineering process. Such a thing might
not exist [11].

The engineering of complex systems typically follows a top-down and then
bottom-up development process, depicted as a V, where the left half of the V'
represents the requirements definition and decomposition effort, and the right
half of the V represents integration and verification [12]. (See figure 2 (a)). This
basic flow holds generally, including ad hoc integration and business process re-
engineering situations. In more complex systems development, the conceptual
architecture itself may be subject to modification during development. This pro-
cess has been described as a modified-V pattern [28]. (See figure 2 (b).) This flow
somewhat resembles one in software systems engineering in which one evolution-
ary path of development (and the “stove-piping” it entailed) is terminated and
a reconceptualization is made to simplify broad areas of the design.

Architecture

A A

v

Requirements

Te Requirements
Dei‘lmhon Definition
i g
. Integration and Integration
Analysis and Analysis andg
Verification Verification
(a) (b)

Fig. 2. Two patterns of systems engineering process

We are motivated in this discussion to identify the systems engineering pro-
cess and problem-solving architecture that best address the nature and require-
ments of software systems integration in a MBE. These requirements include
(1) the facilitation of heterogeneous viewpoints and notations that express the
many relevant views of the system; (2) the communication of results among these

viewpoints [30]; (3) modularity that accommodates new viewpoints; (4) simplic-
ity; (5) end-to-end (requirement definition to validation) completeness, and; (6)
leverage of our knowledge of the problems of systems integration, including clas-
sification of integration impediments.

Of these requirements, (1), and (2), appear to be most difficult to satisfy.
Among the many issues here, knowing what information need be communicated
among viewpoints and what form that communication should take are problem-
atic. Agencies do not act in total isolation, however the complexity of engineering
the entire system requires that details that are inconsequential to the decisions
of other agencies remain isolated in the agency from which these details originate
[18]. Deciding what information needs to be exposed requires systemic domain
knowledge. An analogy from the systems engineering of physically-intensive sys-
tems [22] illustrates the problem: Suppose a spacecraft project has a weight
budget and a choice of integrated circuit (IC) technology must be made. It may
appear that the choice has little to do with weight (all chip weights are approx-
imately equal). However, one IC technology may entail greater power consump-
tion and thus the need for additional solar power collectors and batteries. An
analysis of similar problems, termed nearly decomposable problems, is provided
by Simon [26].

We consider three general processes:

Discipline-centric process: A discipline-centric systems engineering pro-
cess is one in which engineering capability is organized by engineering discipline
(e.g., network analysis, concurrency analysis). That is, engineering capability is
organized into problem-solving agencies by classification of their area of exper-
tise. Examples of this approach include the time-tested means by which many
physically-intensive systems such as automobiles, aircraft, and spacecraft, are
developed. The process is most effective when applied to the development of
a class of similar products, where knowledge of the flow of information among
agencies (that is, a design procedure) has been well established.

In this process, problem solving follows an established route.

Component class-centric process: A component class-centric systems en-
gineering process is one in which engineering capability is organized by expertise
in the development of a class of subsystems (e.g., database or factory floor data
collection). This class is related to the discipline-centric process in that disci-
plines and subsystems tend to correspond. The process is most effective when
applied to projects that require the development of new subsystems. The proce-
dure is at a disadvantage in situations where the specification of the interfaces
between components are subject to modification.

In this process, problem solving follows a route determined by functional
decomposition.

Problem-centric process: A problem-centric systems engineering process
is a variation of a discipline-centric process in which engineering capability is
organized to address classes of well-known problems. However, here no design
procedure has been established. Instead, derived conceptual requirements iden-
tify instances of the well-known integration problems. The approach may become

excessively complex if these problems are revealed not by derived conceptual re-
quirements, but only through detailed design commitments.

In this process, problem solving follows a route that emerges only with re-
finement of requirements and assertion of commitments.

Of the approaches considered, the problem-centric process appears to be
most appropriate to the design of an MBE for software systems integration. A
discipline-centric process is not responsive to the ad hoc emergence of integra-
tion tasks, as might be required to resolve a control conflict (see section 3), for
example. A component class-centric process may avoid this problem but may
be inappropriate where the concerns to be resolved are predominantly impedi-
ments to integration not design syntheses. In the use envisaged, enterprise views
of the baseline system provide a conceptual model upon which derived concep-
tual requirements can be formulated. Derived requirements that concern needed
information flows, temporal ordering, and timeliness constraints between identi-
fied components provide a basis to review the subject components with respect
to the impediments to integration (Section 8). The demarcation between re-
quirements (invariantly asserted) and design commitments (subject to possible
retraction) is the point at which the information flow, its temporal constraints,
and a neutral representation of the information to be exchanged” are identified
and provided to problem solvers corresponding to particular concerns. Design
commitments made by problem solvers may introduce new integration concerns.

5 A Model-based environment for software systems
integration

This section describes an MBE for software systems integration based on the
problem-centric systems engineering process. The approach suggested in the pre-
vious section involves multi-disciplinary knowledge, heuristic techniques, and a
flexible problem-solving ability.

Success in the use of the approach requires, foremost, a comprehensive collec-
tion of information, including enterprise models, information models, and tech-
nical models. The scope of information required must be sufficient to reveal
obstacles to the implementation of the new business process. Some of the in-
formation necessary may exist as artifacts of earlier design efforts. Information
such as a mapping of information structures to an ontology of concepts in the
business process, imposes an additional cost on systems integration. However,
in the system envisaged, the ontology and references between models should
provide enduring value; it can evolve with the enterprise system it represents.
As described in [8], the information collectively embodies an enterprise model
of the subject business processes. The model is an emergent enterprise model in
the sense that it comes into being through the accretion and interrelation of the

" This representation may be, for example, an ontology of concepts relevant to the
business process being implemented. Problem solvers may need access to a view
that maps these concepts to information structures they expose in interfaces.

10

various models generated in the course of the development and evolution of the
enterprise’s infrastructure.

Two other obstacles, these concerning the ’human element’ must be ad-
dressed: (1) original statements of requirement are typically informally speci-
fied, potentially inconsistent or wrong, and; (2) modeling notation (especially
graphical ones) may be interpreted in differing and potentially conflicting ways.

With regards to (1), implementation of the approach imposes the additional
work of translating the original requirements into a formal notation consistent
with concepts in the ontology of the business process. The consequences of (2) are
that inferences made from such models are apt to be invalid. The system should
recognize certain modes of use (e.g., a UML class diagram used to represent
conceptual entities versus a UML class diagram used to implement classes) and
make inferences accordingly.

Figure 8 depicts the basic concept of the envisaged system. The design uses
a blackboard architecture [5] to orchestrate viewpoint-specific problem solvers.
The blackboard tracks the developing system concept and system solutions.
Technical problem solvers provide results that are contingent upon assumptions
about prevailing designs. The systems engineering executor is responsible for par-
titioning design commitments by the assumption set on which they are based.
An assumption-based truth maintenance system (ATMS) [6], [7] may serve this
purpose. Conceptual problem solvers provide the systems engineering executor
with derived requirements, which are not assumption-based.

refinements and design commitments Madel Repository Enterprise
» (meta-object facility) Ontology
Original
Requirements views terms
h 4 T —
H—————7 o
SE Executor f 8
] View translation é?
o o N
System Q,_:. < » | Conceptual g
Concept I = Problem Solver =
W‘
g g
— System =
e «—| E &
Solution = 5
e E :
View translation —_
<+ -
ATMS —p Technical
Problem Solver |H

Fig. 3. System design

11

The nature of the language on the blackboard is a matter of great importance
in the design of such a system. The language is the means by which problem
solvers communicate with each other. It must be capable of expressing require-
ments and specifications at varying levels of detail. Further, it must be capable
of providing content to the various viewpoints of problem solvers. In designing a
language with these capabilities there is a risk of disproportionate reliance on the
representation scheme of some given problem solver. To reduce this risk, the sys-
tems engineering executor component must operate only on information that is
meta-level to the content that motivates the problem solvers. This requires that
the language distinguish (1) problem domain content from (2) constructs that
concern the structure and modality of the content, and provides directives to
and from the executor. The nature of the designed systems engineering process
is affected primarily by choice of representation scheme for message structure,
modality, and executor directives, whereas the nature of the designed domain
problem solving capability is affected primarily by the choice of representation
scheme for the content language.

The purpose of the content language on the blackboard is to present problems
for solution by the problem solvers. Problem solvers are responsible for transla-
tion to and from the blackboard content language to whatever form they find
useful. The language concerns requirements, specifications, and the refinement
of both. Earlier work in this area has addressed issues of accommodating vari-
ous notations [16], [31], and refinement of requirements [30], [27]. More recently,
interest in the family of languages concept of UML [4] has directed attention to
providing a semantics and formal foundation to relate a collection of modeling
notations.

The blackboard content language of the subject model-based environment,
may be patterned after the predicate logic-based representation described by
Zave and Jackson [31]. It should accommodate a notion of refinement such as
found in the Z specification language [27].

Problem solvers draw on prescriptive views (views corresponding to the problem-
solving tasks for which they are specialized) as well as concept links that resolve
terms referenced in requirements to information structures relevant to the views
on which they work. Prescriptive views and concept links (views themselves)
are retained in a model repository based on the OMG meta-object facility [20].
Terms referenced in requirements correspond to concepts defined in the enter-
prise ontology. The enterprise ontology could be implemented in a description
logic such as Powerloom [24].

Prescriptive views are typically founded on existing viewpoint technology.
Although a complete analysis of the relationship between prescriptive views and
the integration impediments on which they have bearing is beyond the scope of
this paper, the following observations can be made:

— Prescriptive views serving technical impediments include ADLs [1] and be-
havioral modeling notations such as statecharts [13].

— Prescriptive views serving semantic impediments include database schema,
ontologies, and tools that identify conceptual differences in these.

12

— Prescriptive view serving functional impediments include the functional spec-
ification of components, activity diagrams such as IDEF0 [10], statecharts
[13], functional flow block diagrams [23], and enterprise models [9].

Finally, the following observations can be made about this design:

— The design does not preclude the possibility that some problem solvers could
be human.

— The design does not entail the definition of a formal notation for prescriptive
views that lack one (e.g., statecharts). How a problem is resolved through
use of the view is a choice left to the problem-solver implementation.

— The systems engineering executor (serving the role of initiator of the black-
board) does not require global knowledge concerning the expertise of problem-
solvers.

— The systems engineering executor is not responsible for transformations to
problem solver notations.

— Subject system design choices can be traced to requirements.

6 Related work

The Model Driven Architecture (MDA) of the Object Management Group (OMG)
describes an approach that may allow a model specifying system functionality
to be realized on multiple platforms through auxiliary mapping standards, or
through point mapping to specific platforms. The model, called a platform inde-
pendent model (PIM), provides a specification of the structure and function of a
system that abstracts away technical detail. [19].

The MDA is primarily concerned with providing freedom in the selection
of middleware technology, and hence addresses a significantly narrower class
of problems than the approach suggested by this paper. The MDA approach
assumes agreement among communicating components on four of the five inte-
gration impediments described in Section & (functional, semantic, qualitative,
and logistical), and resolves only a subset of technical impediments.

The MDA PIM provides the viewpoints provided by the Unified Modeling
Language. These concern structural and control commitments that can be di-
rectly transformed into interface specifications. The PIM does not address most
semantic concerns, such as mismatch of scope, granularity of abstraction, and
temporal basis [29]. A PIM may provide a UML activity diagram that, like Z,
does not indicate the agents performing the activities. This can be an advantage
when the the matter of who should act as server is a design issue. However, as
this paper suggests, the choice can be contingent on a wide spectrum of related
concerns.

UML Version 2 (currently under development) intends to provide a common
underlying semantics for the viewpoints of UML.[21] This would further the
goals of MDA, and provide to this project valuable input towards developing
the content language of problem solvers.

13

ARIES [16], and the work of Zave and Jackson [31], is related to this work
in providing environments for representing requirements and refinement amid
multiple viewpoints. Those works sought a common underlying semantics for
composition of specification across viewpoints. Like UML Version 2, those works
may serve to provide a content language for the problem solvers of our work.
They differ from what we propose in that we use the blackboard executor to
focus attention on the impediments to integration, and use a model repository
for accruing inter-model dependencies.

7 Conclusion

In this paper we reviewed ideas from systems engineering so as to identify the full
scope of challenges affecting the ability to automate tasks of software systems in-
tegration. We identified a systems engineering process based on the resolution of
integration impediments as the most efficient towards meeting these challenges.
The solution outlined implements the systems engineering process as a black-
board executor mediating problem solvers working from multiple viewpoints.

The resolution of certain integration problems involve design choices, and
hence are likely to be addressed only through heuristic, knowledge-based problem
solvers. Some semantic impediment, resist solution through automated means.
In these situations, it might be possible to create and rely on semantic links
between information structures exposed at interfaces and a domain ontology.
But this approach is unproven and could prove costly.

Our implementation of the ideas presented in this paper have been limited to
the development of a basic meta-object facility, components of a blackboard and
investigation of problem-solver technology such as the description logic systems
[24]. Work towards the system envisaged is continuing.

A Glossary of the terms from the conceptual model

Behavior - how something acts in response to stimulus

Constraint - an expression derived from a requirement that partitions system
solutions into those that meet the requirement and those that do not

Environment - the context in which a system operates

Function - mode of action or activity by which a thing fulfills its purpose

Optimization Criterion - a mathematical expression derived from a require-
ment that provides an ordering and metric on system solutions indicating
how well each solution meets the requirement

Requirement - an optative statement intending to characterize and identify a
system solution

Risk - a probabilistic expression that appraises the consequences of not meeting
particular requirements

Role - the characteristic function or expected function of a thing in the context
of a system solution

14

Solution Metric - expressions derived from requirements that are used to mea-
sure system solutions

System Concept - the concept of an assembly of interacting components form-
ing a whole and serving requirements

System Solution - an assembly of interacting components designed to meet
requirements

Trace - an account of the relationship between a requirement and a design
decision

Validation - the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
uses of the model [2]

Verification - the process of determining that a model implementation accu-
rately represents the developer’s conceptual description of the model and the
solution to the model [2]

View - a representation of a whole system from the perspective of a related set
of requirements (derived from the definition of the term in [14])

Viewpoint - methods founded on the body of knowledge of some engineering
or analytical discipline and used in constructing a view. N.B., viewpoints
establish the purpose and audience of a view.

References

1. Allen, R., Garlan, D., “A Formal Basis for Architectural Connection,” ACM Trans-
actions on Software Engineering and Methodology. July, 1997.

2. American Institute of Aeronautics and Astronautics, AIAA Guide for the Verifi-
cation and Validation of Computational Fluid Dynamics Simulations (G-077-1998),
ATAA Standards Series, 1998.

3. Barkmeyer, E. J., (Editor). Concepts for Automating Systems Integration, NIST
Interagency Report, National Institute of Standards and Technology, Gaithersburg,
Maryland, To be published.

4. Cook, S., “The UML Family: Profiles, Prefaces and Packages” UML 2000 — The
Unified Modeling Language: Advancing the Standard, Proceedings of the Third In-
ternational Conference, York, UK, Springer Lecture Notes in Computer Science, Vol
1939, October 2000.

5. Craig, 1., D., Formal Specification of Advanced AI Architectures, Ellis Horwood
Limited, Chichester, West Sussex, 1991.

6. de Kleer, J., “An Assumption-Based TMS,” Artificial Intelligence 28(2): 127-162,
1986.

7. de Kleer, J., “A Perspective on Assumption-Based Truth Maintenance,” Artificial
Intelligence 59(1-2): 63-67, 1993.

8. Denno, P., Flater, D., Gruninger, M., “Modeling Technology for a Model-Intensive
Enterprise,” Proceedings of SSGRR-2001, Infrastructure for e-Business, e-Education,
e-Science, and e-Medicine, Scuola Superiore G. Reiss Romoli, L’Aquila, Italy, July,
2001.

9. Esprit Consortium AMICE (editors), CIMOSA: Open System Architecture for CIM,
2nd revised and extended edition, Springer-Verlag, Berlin, 1993.

15

10. Federal Information Processing Standards, Integration definition for function mod-
eling (IDEF(0), National Institute of Standards and Technology, Gaithersburg, Mary-
land, 1993.

11. Gabb, A., “Requirements Categorization,” Requirements Working Group of the
International Council on Systems Engineering (INCOSE), 2002.

12. Grady, J., O., System Integration, CRC Press, Boca Raton, Florida, 1994.

13. Harel, D., “Statecharts: a visual formalism for complex systems”. Science of Com-
puter Programming 8, 3, June 1987.

14. TIEEE 1471, IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. Institute of Electrical and Electronics Engineers, Inc., September,
2000.

15. ISO/IEC IS 10746, ITU-T X.900, Open Distributed Processing — Reference Model,
International Organization for Standards, 1996.

16. Johnson, W. L., Feather, M. S., and Harris D. R., “Representation and Presentation
of Requirements Knowledge,” IEEE Transactions on Software Engineering, Vol 18,
No. 10. October, 1992.

17. Mark, W, et al., “Commitment-Based Software Development,” IEEE Transactions
on Software Engineering, Vol 18, No. 10. October, 1992.

18. Minsky, M., The Society of Mind, Simon & Schuster, New York, New York, 1985.

19. Object Management Group, Model Driven Architecture (MDA),
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01, July 1, 2001.

20. Object Management Group, Meta Object Facility (MOF) Specification, Version 1.3:
ftp://ftp.omg.org/pub/docs/ formal/00-04-03 March, 2000.

21. Object Management Group, Request For Proposal: UML 2.0 Infrastructure,
ftp://ftp.omg.org/pub/docs/ad/2000-09-01, September, 2000.

22. Oliver, D. O., Personal communications.

23. Oliver, D. O., Kelliher, T. P., and Keegan, G. J., Engineering Complex Systems
With Models and Objects, McGraw Hill Text, 1997.

24. Preece, A., et al. “Better Knowledge Management through Knowledge Engineer-
ing,” IEEE Intelligent Systems 16:1, Jan-Feb, 2001.

25. Quine, W. V., From a Logical Point of View, second edition, Harvard University
Press, Cambridge Massachusetts, 1980.

26. Simon, H. A., The Sciences of the Artificial, Third Edition, The MIT Press, Cam-
bridge, Massachusetts, 1996.

27. Spivey, J. M., The Z Notation: A Reference Manual, Prentice-Hall, London, 1989.

28. Thomas, L. D., “System Engineering the International Space Station,” NASA Lan-
gley Research Center, International Space Station Video Conference ’97, 1997.

29. Wiederhold, G., “Mediators in the Architecture of Future Information Systems,”
IEEE Computer Magazine, March, 1992.

30. Zave, P.; Jackson, M.: “Four Dark Corners in Requirements Engineering,” ACM
Transactions on Software Engineering and Methodology, Vol 6, No. 1, January 1997.

31. Zave, P., Jackson, M.: “Conjunction as Composition,” ACM Transactions on Soft-
ware Engineering and Methodology, Vol 2, No. 4, October, 1993.

